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ABSTRACT
Marine ecosystems boast a rich biodi-
versity and chemodiversity. In recent 
years, the bioprospecting and screen-
ing for bioactive compounds revealed 
the existence of a plethora of new 
potential therapeutics in the oceans. 
Among these are secondary metabolites 
with potential applications in human 
immunoinflammatory diseases to miti-
gate oxidative stress and pro-inflam-
matory responses. Molluscs, sponges, 
corals and other metazoans, but also 
photosynthetic microorganisms and 
seaweeds, produce bioactive com-
pounds which interfere with the main 
pro-inflammatory pathways involved 
in the pathogenesis and progression 
of chronic inflammatory diseases and 
autoimmune disorders. Several marine 
compounds have already reached the 
pre-clinical and clinical stage of inves-
tigation, and some are expected to en-
ter clinical practice soon. In this review 
we cover the recent advancements in 
marine drug discovery related to anti-
inflammatory and immunomodulatory 
compounds and discuss their potential 
therapeutic applications. 

Introduction
In clinical practice, the mainstay for 
the treatment of acute and chronic 
inflammatory diseases are synthetic 
drug formulations, such as aspirin, 
nonsteroidal anti-inflammatory drugs 
(NSAIDs) and glucocorticoids (1). 
While these therapeutics are effective, 
their prolonged use can lead to harmful 
side effects, especially in patients suf-
fering from chronic inflammatory dis-
eases like rheumatoid arthritis (RA), 
the most common immune-mediated 
arthropathy (2, 3).
Natural anti-inflammatory compounds 
represent alternative solutions with 

fewer associated long-term risks and 
side effects (4). Marine environments 
have a long history as sources of bioac-
tive compounds (5). The extremely rich 
marine biodiversity has gained increas-
ing attention in recent years thanks to 
an intense bioprospecting activity and 
identification of novel therapeutic lead 
compounds. Not only microorganisms, 
but also metazoans, particularly inver-
tebrates and their associated microbio-
ta, and photosynthetic organisms like 
macroalgae, microalgae and cyano-
bacteria, produce a vast array of bio-
active compounds with emerging phar-
macological potential in the treatment 
of chronic inflammatory diseases and 
cancer (6-8). Among these, pigments 
and lipids represent the two main class-
es of compounds endowed with anti-
inflammatory and immunomodulatory 
properties (Fig. 1) (9). Several marine-
derived molecules have already entered 
the clinical trial stage, and many are 
currently being investigated in terms 
of mechanism of action in preclinical 
(10) studies (Supplementary Tables S1, 
S2, S3). Marine drug discovery activi-
ties are being conducted worldwide, 
with China being one of the leading 
countries, as reflected by a dedicated 
national Marine Materia Medica (11). 
Most marine compounds with market 
approval include anti-cancer drugs in 
the form of antibody-drug conjugates 
(12). Among the few examples of ma-
rine natural products being marketed as 
approved therapeutics is the oligosac-
charide sodium oligomannate (market-
ed as GV-971, Shanghai Green Valley 
Pharmaceuticals, China) derived from 
a marine brown alga (13) and used in 
the treatment of Alzheimer’s disease. 
The β-1,3/1,6-glucan (BG136) derived 
from the Kelp species (Durvillaea ant-
arctica) is an oligosaccharide with es-
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tablished applications in cancer immu-
notherapy being developed by Qingdao 
Marine Biomedical Research Institute, 
Ocean University of China, and CP 
Pharmaceutical (Qingdao) which en-
tered clinical trial stage in 2022 (14-
16).
In this review we offer a comprehen-
sive summary of the state-of-the-art 
picture of marine-derived compounds 
highlighting their potential use as alter-
native and/or complementary therapeu-
tic agents in the treatment of immuno-
inflammatory diseases. We emphasize 
the relevance of marine biodiversity in 
the discovery of novel anti-inflamma-
tory compounds.

Fish and krill oils
Fish oils are rich sources of omega-3 
fatty acids, particularly eicosapentae-
noic acid (EPA) and docosahexaenoic 
acid (DHA). EPA and DHA are criti-
cal for the maintenance of the structure 
of cell membranes, influencing their 
fluidity and the function of membrane 
receptors (17). Moreover, marine oils 
interfere with the expression of several 
pro-inflammatory cytokines, including 
tumour necrosis factor (TNF)-α and 
interleukin (IL)-1β and alleviate pain 
and morning stiffness, thus reducing 

the need for NSAID consumption (18, 
19). It is well established that higher 
serum levels of omega-3 (e.g., EPA 
and DHA) fatty acids correlate with 
a lower activity of inflammatory pro-
cesses compared with omega-6 (e.g. 
arachidonic acid) (20). For instance, it 
was reported that omega-3 fatty acids 
lower the risk of inflammatory arthritis 
in subjects presenting anti-citrullinated 
protein antibodies without a previous 
diagnosis of RA (21). 
Moreover, a recent clinical study con-
cluded that the intake of omega-3 fatty 
acids helped reduce RA inflammation 
and disease activity from disease onset, 
and omega-6 fatty acids were associ-
ated with lower disease activity after 
6 months from onset (22). Overall, 
the dietary supplementation of marine 
(mainly fish) omega-3 fatty acids may 
support the standard pharmacological 
therapies in controlling disease activ-
ity and progression in various rheu-
matic diseases like RA, systemic lupus 
erythematosus (SLE) and osteoarthritis 
(OA) (23). 
The Antarctic krill Euphausia superba, 
a small shrimp-like crustacean rich 
in EPA and DHA, is another valuable 
source of omega 3-fatty acids (24). Un-
like traditional fish oils, where long-

chain omega-3 fatty acids are predomi-
nantly found as part of triacylglycerols, 
krill oil contains these fatty acids main-
ly bound to phospholipids, which result 
in higher bioavailability (25-27). No-
tably, krill oil is rich in astaxanthin, a 
potent antioxidant carotenoid pigment 
(discussed later in more detail) (28,29). 
A recent randomised, double-blind trial 
involving patients with mild osteoar-
thritis of the knee or hip joint showed 
a significant pain-relieving effect and a 
good safety profile and safety of Krill 
Oil in combination with astaxanthin 
compared with lower molecular weight 
hyaluronic acid (30).
Another multicentre trial investigated 
the effects of a daily supplementation 
of krill-derived omega-3 rich oil in pa-
tients with SLE highlighting the ben-
eficial impact on omega-3 deficiency 
which could be corrected within one 
month (31). Moreover, the disease ac-
tivity was significantly reduced over the 
24-week treatment period in the patient 
group displaying the highest activity at 
baseline (SLEDAI-2K ≥9). Therefore, 
fish oils, especially krill oil, are consid-
ered highly valuable food supplements 
of omega-3 fatty acids endowed with 
bioavailability, thus particularly effec-
tive in reducing joint pain and inflam-
mation in OA, RA and SLE.

Marine invertebrates
Mollusca
A hallmark of the inflamed RA joint is 
a rapid decline in oxygen levels leading 
to increased production of reactive ox-
ygen species (ROS). In turn, ROS ac-
tivate the expression of pro-inflamma-
tory genes like interleukin-1β (IL1β) 
and IL-6, resulting in extensive oxida-
tive tissue damage (32). This environ-
ment also interferes with the activity of 
macrophages, promoting their switch 
towards the M1 pro-inflammatory 
phenotype (33). Antioxidant and anti-
inflammatory compounds are there-
fore essential in mitigating oxidative 
and pro-inflammatory responses in RA 
patients. Extracts of Paphia malabar-
ica, a marine bivalve native to south-
eastern Asia, were recently shown to 
display anti-inflammatory activity in 
vitro using radical scavenging and 
anti-cyclooxygenase-2/5-lipoxygenase 

Fig. 1. Marine sources of anti-inflammatory and immunomodulatory compounds.
ROS: reactive oxygen species; iNOS: inducible nitric oxide synthase; NO: nitric oxide; COX-2: cy-
clooxygenase-2; COX-1: cyclooxygenase-1; PGE2: prostaglandin E2; PLA2: phospholipase A2; LTB4: 
leukotriene B4; TNF-α : tumour necrosis factor-α; IL-1β: interleukin-1β; IL-6: interleukin-6; IL-10: 
interleukin-10; NF-κB: nuclear factor kappa B; DHA: docosahexaenoic acid; EPA: eicosapentaenoic 
acid; ERK1: extracellular signal-regulated kinase 1; Akt: protein kinase B; PI3K: phosphoinositide 
3-kinase; MEK/ERK: mitogen-activated protein/extracellular signal-regulated kinase; Th1: T helper 1; 
Th17: T helper 17. The figure was created with www.biorender.com.
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assays (34). Other mussel-derived an-
ti-inflammatory compounds were de-
scribed recently (35). Among these, the 
green-lipped mussel (Perna canalicu-
lus) native to New Zealand displays a 
high tissue content of omega-3 fatty ac-
ids, which have established antioxidant 
and anti-inflammatory properties (36-
37). This bivalve is extensively used 
in traditional medicine and has been 
investigated in modern times to iden-
tify its bioactive components (38). In 
the 1990’s, the extract of Perna canali-
culus, known as Lyprinol was shown to 
exert inhibitory effects in vitro on the 
cyclooxygenase-2 and 5-lipoxygenase 
enzymes, thereby reducing the produc-
tion of the proinflammatory mediator 
leukotriene B4 by human polymorpho-
nuclear leukocytes, but also decreased 
prostaglandin E2 production by acti-
vated human macrophages (39). 
Lyprinol effectively reduced the levels 
of inflammatory marker in a murine 
RA model without causing gastroin-
testinal toxicity or affecting platelet 
aggregation, a common side effect of 
prolonged NSAIDs use (40). More re-
cently, lyprinol was tested in a clinical 
trial involving a cohort of 60 patients 
suffering from hip or knee osteoarthri-
tis showing a significant reduction of 
pain and a progressive improvement of 
joint function (41). The beneficial ef-
fects of Perna canaliculus’s extracts 
have been highlighted in multiple clini-
cal trials, in particular as an adjuvant 
treatment for osteoarthritis (42).
It was concluded that the high content 
of eicosapentaenoic acid (EPA) and do-
cosahexaenoic acid (DHA) is responsi-
ble for limiting the synthesis of inflam-
matory mediators, mainly prostaglan-
dins and leukotrienes, by interfering 
with the arachidonic acid cascade, 
thereby reducing inflammation. The 
combined effect of lipids and flavo-
noids derived from Perna canaliculus 
and the blue mussel Mytilus edulis was 
also reported as an effective approach 
for the treatment of RA (43). The lipid 
extract from Perna canaliculus, con-
taining over 60 bioactive compounds 
and known commercially as PCSO-
524™, is used to reduce physical dis-
comfort and pain in patients diagnosed 
with osteoarthritis with comparable 

effects to traditional fish oil (44, 45). 
A randomised clinical trial enrolling 
80 patients with moderate to severe 
hip or knee osteoarthritis treated with 
Perna canaliculus extract reported a 
significant reduction of joint stiffness 
and NSAIDs use in the post-interven-
tion phase and a high safety profile 
(46). The same formulation was shown 
to alleviate pain after 2 months in a 
double-blind placebo-controlled clini-
cal trial involving patients with knee 
osteoarthritis. Of note, the absence of 
gastrointestinal side effects highlighted 
the good safety profile of this dietary 
intervention (47, 48). The lipid extracts 
of the Korean mussel (Mytilus corus-
cus) have also been shown to inhibit 
the major pro-inflammatory signalling 
pathway Nuclear Factor kappa-light-
chain-enhancer of activated B cells 
(NF-κB) by reducing the synthesis of 
signalling pro-inflammatory cytokines 
(TNF-α, IL-1β, and IL-6), while pro-
moting the release of the anti-inflam-
matory cytokine IL-10 in murine RA 
models (49). The emerging beneficial 
effects of Mollusca-derived lipids sug-
gest their use as complementary die-
tary to alleviate inflammation thus and 
improving the overall quality of life.

Sponges (porifera)
Several marine sponges produce anti-in-
flammatory bioactive compounds which 
inhibit key pro-inflammatory mediators 
like TNF-α, IL-6, IL-1β, prostaglandin 
E2 (PGE2), nuclear transcription fac-
tor-kappa B (NF-κB), leukotriene B4 
(LTB4), superoxide radicals and nitric 
oxide (NO) and the enzymes responsi-
ble for their production, including in-
ducible nitric oxide synthase (iNOS), 
cyclooxygenase-2 (COX-2), phospholi-
pase A2 (PLA2) and cyclooxygenase- 1 
(COX-1) (50). For example, the sulfated 
sterol Solomonsterol A produced by 
the marine sponge Theonella swinhoei 
is a potent pregame-X-receptor agonist 
which was shown to attenuate systemic 
inflammation and immune dysfunction 
in a murine RA model (51). Similarly, 
the bioactive extracts from the sponge 
Cliona celata displayed a strong anti-
inflammatory activity on lipopolysac-
charide (LPS)- stimulated murine mac-
rophages (52).

Marine fungi
Marine fungi produce a plethora of 
anti-inflammatory compounds. So far, 
around 150 molecules, predominantly 
produced by Aspergillus and Penicil-
lium subspecies have been character-
ized in terms of mechanism of action 
(53). Several compounds interfere with 
key pro-inflammatory pathways and, 
in particular by disrupting the produc-
tion of the mediators nitric oxide and 
prostaglandins, as demonstrated both 
in vivo and in vitro (53). One notable 
example is the phenolic compound 
4-hydroxymethyl-catechol isolated 
from fungi of the Pestalotiopsis spe-
cies, one of the several organisms com-
posing the microbiota associated with 
marine sponges native to South Korea 
(54). 4-hydroxymethyl-catechol has 
been shown to modulate the phosphati-
dylinositol 3-kinase (PI3K)/protein 
kinase B (Akt)/NF-kB signalling path-
way suppressing the pro-inflammatory 
response of helper T (Th)1 and Th17 
CD4+ lymphocytes in human RA syno-
vial fibroblasts both in vivo and in vitro. 
Along with the mitogen-activated pro-
tein kinase (MEK)/ extracellular sig-
nal-regulated kinase (ERK) pathway, 
PI3K and NF-κB play a pivotal role 
in the development and progression of 
the inflammatory response observed in 
RA, therefore their timely inhibition is 
crucial to mitigate the disease symp-
toms and to improve joint health (54, 
55). This evidence suggests a feasible 
translation of -hydroxymethyl-catechol 
into clinical practice. Finally, the fun-
gal symbiont Aspergillus flocculosus 
16D-1 which lives in association with 
the sponge Phakellia fusca, showed an 
inhibitory activity against IL-6 produc-
tion in vitro, suggesting its future use 
as a therapeutic agent (56). Further-
more, six new seco-terpenoids derived 
from marine fungus Talaromyces au-
rantiacus were shown to reduce NO 
production in LPS-induced inflamma-
tory in vitro model (57). 

Photosynthetic organisms: 
seaweeds and microalgae
Seaweeds
Seaweeds (or macroalgae) have been 
used in traditional medicine by coastal 
communities from immemorial time. 
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Several classes of seaweeds produce 
bioactive compounds, many endowed 
with anti-inflammatory and immu-
nomodulatory properties. Brown algae 
(Phaeophyceae) contain the photosyn-
thetic pigment fucoxanthin, which is 
a potent antioxidative agent known to 
stimulate the PI3K/Akt/Nrf-2 path-
way in vitro (58). Turbinaria ornata, a 
brown alga native of the Pacific and In-
dian Oceans contains anti-inflammato-
ry and antioxidant compounds display-
ing inhibitory effects in vivo against in-
flammation and bone damage, resulting 
in a marked reduction in the arthritic 
score and paw volume in murine mod-
els (59). The extracts from another ed-
ible brown macroalga, Eisenia bicyclis, 
were shown to suppress the expression 
of iNOS and COX-2 genes in vitro 
(60), while Porphyra dentata’s ex-
tracts, a red edible seaweed, are rich in 
the phenolic compounds catechol and 
rutin, which suppressed NO production 
and the NF-κB pathway in vitro (61).
The extracts of the seagrass Posidonia 
oceanica, native Mediterranean Sea, 
modulate the ERK1/2 and Akt intra-
cellular cascades, reducing the activity 
of iNOS and COX-2 (62). Similarly, 
a recent in vitro study highlighted the 
antioxidant activity of the crude poly-
saccharide extracts of the green sea-
weed Halimeda tuna (63). These initial 
evidences about bioactive compounds 
from macroalgae highlight the need to 
conduct more extensive bioprospecting 
studies to identify new sources of anti-
inflammatory and immunomodulatory 
metabolites.

Microalgae
Microalgae comprise a vast group of 
photosynthetic prokaryotes and eu-
karyotes adapted to both freshwater 
and marine environments, including 
extreme habitats (Malavasi, Soru, & 
Cao, 2020; Varshney, Mikulic, Von-
shak, Beardall, & Wangikar, 2015). 
Several microalgae are consumed in 
human nutrition as food supplements 
due to their high content of proteins 
and vitamins (64-73). Moreover, sev-
eral species display a high cellular con-
tent of lipids, mainly polyunsaturated 
fatty acids (PUFAs), and photosyn-
thetic pigments with established anti-

inflammatory and immunomodulatory 
properties (74) (Fig. 2). Beside serving 
as natural sources of therapeutic com-
pounds, microalgae are currently being 
tested for more advanced biomedical 
applications to produce biomaterials, 
drug delivery systems and for tissue 
engineering purposes (75-78). Moreo-
ver, microalgal lipids represent a more 
sustainable source of both omega-3 
and omega-6 PUFAs compared with 
fish oils, but also a safer option, due to 
a lower risk of heavy metal contami-
nation (79). Carotenoids are the most 
valuable class of secondary metabo-
lites produced by microalgae. These 
lipid-soluble pigments consisting of a 
polyene chain are strong antioxidants 
which protect the photosynthetic ap-
paratus from oxidative damage (Fig. 
2) (80-81). Like all photosynthetic or-
ganisms, microalgae produce various 
carotenoid molecules. β-Carotene, an 
antioxidant molecule, is the precursor 
of retinol (vitamin A) in animals and 
is known to interfere with major pro-
inflammatory pathways involved in the 
development and progression of RA 
and SLE (82-84). A strong correlation 
between the serum concentrations of 
antioxidant vitamins A and E and in-
flammatory markers in RA patients is 

well established (85) and the dietary 
intake of β-carotene, lycopene, vita-
min C, and vitamin E is a major factor 
contributing to reduce the risk of devel-
oping hip osteoarthritis (86). Notably, 
lycopene extracted from the marine 
microalga Chlorella marina (Trebouxi-
ophyceae) was reported to be more ef-
fective in reducing serum inflammatory 
biomarkers like erythrocyte sedimenta-
tion rate, white blood cell counts and 
C-reactive protein in a RA mouse mod-
el compared with that deriving from 
tomato (Solanum lycopersicum). Also, 
the microalgal compound was more ef-
fective in alleviating joint oedema (87). 
Lutein is found in several microalgal 
species, with the higher producers be-
ing the green microalgae (Chlorphyta) 
Tetraselmis suecica and Tetraselmis 
chuii (88, 89). Lutein is a strong anti-
oxidant with potent anti-inflammatory 
properties (90) and the algal lutein 
from Tetraselmis suecica was shown to 
inhibit in a dose-dependent manner ni-
tric oxide (NO) production and release 
of pro-inflammatory cytokines (TNF-α 
and IL-6) in murine models (88). Lu-
tein from Tetraselmis species were also 
reported to inhibit in vivo the key in-
flammatory enzyme cyclooxygenase-2 
(COX-2) and blocked the nuclear 

Fig. 2. Immunomodulatory and anti-inflammatory effects of marine bioactive compounds exerted at 
the intracellular level. 
ROS: reactive oxygen species; TNF-α: tumour necrosis factor-α; IL-6: interleukin-6; IL-1: interleu-
kin-1; IL-13: interleukin-13; ASTX: astaxanthin; IKKβ: IκB kinase β; IKKα: IκB Kinase α; IKKγ: 
IκB kinase γ; P: phosphorylation; IκBα: inhibitor of nuclear factor κB α; NF-κB: nuclear factor κB; 
JAK: Janus kinase; MAPKK: mitogen-activated protein kinase kinase; MAPK: mitogen-activated pro-
tein kinase; PGH2: prostaglandin H2; JAK2: Janus kinase 2; STAT3: signal transducer and activator of 
transcription 3; JNK: c-Jun N-terminal kinase; p38: p38 mitogen-activated protein kinase. The figure 
was created with www.biorender.com.
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factor-kB (NF-κB) pro-inflammatory 
pathway, causing the suppression of 
the release of inflammatory cytokines, 
including interleukin-1β (IL-1β), in-
terleukin-6 (IL-6), monocyte chemoat-
tractant protein-1 (MCP-1) and TNF-α 
(91). Notably, cellular lutein content 
could be accrued via directed evolution 
in the GRAS/Novel food freshwater 
microalga Chlamydomonas reinhardtii 
(92), a species which serves as experi-
mental model for translational research 
into industrially relevant strains.
Tetraselmis chuii is a non-toxic micro-
alga which has been designated by the 
American Food and Drug Administra-
tion (FDA) and the European Food 
Safety Authority (EFSA) as generally 
recognised as safe (GRAS) and novel 
food, respectively (93, 94). The stress-
resilient strain Tetraselmis striata is 
particularly attractive since it accumu-
lates both anti-inflammatory pigments-
like and lipids in response to environ-
mental stresses, therefore it holds great 
promise as a natural source of bioactive 
compounds (95). The stress-resilient 
strain Tetraselmis striata is particular-
ly attractive since it accumulates both 
anti-inflammatory pigments like lutein 
and lipids in response to environmental 
stresses, therefore it holds great prom-
ise as a natural source of bioactive 
compounds (95). Undoubtedly, the al-
gal carotenoid of greatest therapeutical 
value is astaxanthin, which is known 
to promote bone homeostasis in de-
generative skeletal diseases, including 
RA (96). Astaxanthin is the strongest 
antioxidant of natural origin, which is 
produced by few microalgal species 
(97-100), in particular the green mi-
croalga Haematococcus lacustris (pre-
viously pluvialis) (101, 102) a slow 
growing organism which accumulates 
the pigment only under stressing (ex-
cess light) conditions. Accordingly, a 
great focus is currently placed in the 
enhancement of astaxanthin production 
by its native producer by optimisation 
of culture conditions (103-109) and via 
metabolic engineering of fast-growing 
microalgae (110-114). Astaxanthin is 
known to interfere with the main pro-
inflammatory pathways involved in 
the development and progression of 
chronic inflammatory disorders, in-

cluding auto-immune diseases (115-
124). It is therefore of great interest 
to develop efficient microalgae-based 
production platforms of this extremely 
valuable carotenoid, especially since 
the esterified biological astaxanthin 
displays higher bioavailability and is 
more effective compared with non-es-
terified synthetic versions (125, 126). 
Diatoms (127) and some haptophyte 
species like Tisochrysis lutea produce 
the carotenoid diatoxanthin, which is a 
strong antioxidant and has been shown 
to interfere in pro-inflammatory path-
ways associated with RA (128). The 
diatom Phaeodactylum tricornutum 
accumulates diatoxanthin and several 
bioactive PUFAs (omega 3-fatty acids) 
capable of inhibiting COX-2 enzy-
matic activity. Notably, diatom-derived 
EPA is approved for human consump-
tion in the European Union (129-132). 
Moreover, the carotenoid fucoxanthin 
extracted from Phaeodactylum tricor-
nutum was shown to mitigate IL-1β, 
IL-6, and TNF-α, secretion by inhib-
iting NF-κB and NLRP3-mediated 
inflammasome activation in cultured 
immune cells (133). Pavlova lutheri 
(Prymnesiophyceae) is another marine 
microalga belonging to the phylum 
Haptista with already established ap-
plications in cosmetics due to its rich 
content in omega-3 fatty acids (134, 
135). Lipid extracts of Pavlova lutheri 
are enriched in EPA and DHA and were 
shown to exhibit anti-inflammatory ef-
fects by suppressing the production 
of the pro-inflammatory mediators 
IL-6 and TNF-α by activated human 
macrophages in vitro when provided 
in combination with extracts from the 
two red seaweeds Palmaria palmata 
and Porphyra dioica (136). The marine 
heterotrophic protist Aurantiochytri-
um (formerly Schizochytrium) holds 
GRAS/Novel Food status and is the 
highest DHA and EPA producer (137). 
Notably, the lipid extract of Auranti-
ochytrium (2.1 g DHA/day) displayed 
similar outcomes when compared with 
vegetable (sunflower) oil in a ran-
domised clinical trial involving RA pa-
tients by reducing joint inflammation 
joints after a 10-week treatment (137). 
The tremendous pharmacological po-
tential of marine microalgae is ex-

pected to impact the most on the drug 
discovery research in the upcoming 
years and will be further enhanced by 
synthetic biology approaches to in-
crease the accumulation of endogenous 
metabolites (138). 

Mangrove habitats
Mangrove forests are unique tropical 
ecosystems created by salt-tolerant 
plants in which rich communities of 
microorganisms are found (139) These 
environments have recently emerged 
as sources of anti-inflammatory and 
immunomodulatory compounds of 
various origins. For instance, extracts 
of the mangrove Aegiceras cornicula-
tum were shown to restrain the release 
of the pro-inflammatory cytokines 
TNF-α, IL-6, and IL-12 by cultured 
macrophages (140) while extracts of 
Ceriops decandra and Excoecaria 
agallocha suppressed the NF-κB path-
way (141, 142).

Bridging biotechnology with 
environmental sustainability: 
the way forward
To ensure the continuous exploration 
of marine biodiversity for drug dis-
covery, the exploitation of marine re-
sources for medical purposes should be 
conducted in line with environmentally 
sustainable practices and consider the 
anthropogenic impact on biodiver-
sity erosion. Marine ecosystems are 
already threatened by the various ac-
tivities of the blue economy, namely 
intensive fishing, dredging and sea-
bed mining, which pose a severe risk 
of species extinction (143-146). The 
ecological impact of seabed mining is 
already evident in microorganism bio-
diversity (147), the richest source of 
chemodiversity in the ocean. The con-
sequences of anthropogenic climate 
changes are also already evident in 
invertebrate populations, such Antarc-
tic krill, whose survival is threatened 
by rising water temperatures (148) but 
also on photosynthetic organisms like 
seaweeds, whose chemical composi-
tion is altered due to ocean acidifica-
tion, a direct consequence of the rising 
of atmospheric CO2 levels (149).
Biotechnology and bioengineering ap-
proaches offer an alternative solution 
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to the use of native producers to derive 
compounds of interest and, thus, might 
aid in the preservation of ecosystems. 
In this respect, microalgae are excel-
lent platforms to produce heterologous 
compounds of interest. Their light-
driven metabolism allows for low-cost 
large-scale cultivation and several spe-
cies are amenable to genetic transfor-
mation. Beside boosting the accumula-
tion of endogenous metabolites (pig-
ments and lipids), genetic engineering 
can be harnessed in microalgae to 
achieve the synthesis of exotic metabo-
lites and recombinant protein-based bi-
opharmaceuticals (74).
Furthermore, emerging genetic engi-
neering and synthetic biology tools are 
enabling the production of recombi-
nant therapeutics in cyanoprokaryotes, 
including immunomodulatory proteins, 
opening new avenues for medical ap-
plications of photosynthetic microbes 
(150, 151).  

Bringing marine compounds in 
the clinical practice
Marine-derived natural compounds 
have promising potential as adjuvant 
therapies for inflammatory diseases 
as shown in both in vitro and in vivo 
studies (Supplementary Table S1, S2, 
S3). Several natural compounds, like 
omega-3 fatty acids from marine inver-
tebrates or antioxidant pigments from 
photosynthetic organisms could find 
immediate therapeutic applications to 
mitigate ROS production and to alle-
viate inflammatory symptoms. When 
integrated with conventional therapies, 
these marine-derived compounds may 
not only enhance anti-inflammatory ef-
fects but also reduce the dependency 
on prolonged NSAID use, which is 
frequently linked to severe gastrointes-
tinal and renal side effects (2). There-
fore, these novel bioactive compounds 
offer a complementary approach to im-
prove overall treatment outcomes and 
patient quality of life. One challenge 
for the establishment of marine metab-
olites in routine clinical practice is the 
development of efficient drug delivery 
solutions, especially for poorly soluble 
compounds like photosynthetic pig-
ments, to enhance their bioavailability 
(152-157).

More importantly, future randomised 
controlled trials in patients suffering 
from inflammatory diseases should in-
vestigate how these compounds should 
be integrated into clinical practice to 
achieve the optimal outcomes.

Conclusions
In summary, the ocean represents a vast 
resource for drug discovery and for de-
riving novel anti-inflammatory agents 
for clinical practice. The good safety 
profile of several compounds suggests 
their evaluation through larger and 
more comprehensive studies before 
entering regular use as complementary 
agents alongside, or even in substitu-
tion of, conventional therapies like 
NSAIDs. More research, however, is 
still required to assess their long-term 
effectiveness and synergistic effects 
with conventional therapies in patients 
with chronic inflammatory diseases. 
Moreover, a better understanding of 
the mechanisms of action is needed 
before introducing certain compounds, 
and combinations thereof, in the treat-
ment of specific diseases and to bet-
ter integrate them in clinical practice. 
A likely near future scenario will see 
marine bioactive compounds used as 
adjuvants to traditional medications, 
with the goal of reducing the dosages 
of conventional drugs and minimize 
their adverse effects. This integrative 
approach is expected to improve pa-
tient outcomes, but also to pave the 
way for more sustainable management 
of inflammatory conditions.
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